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I. INTRODUCTION

Differential game theory has attracted considerable
attention in aerospace systems and optimal control
literature since the original work of Isaacs [11] in 1965.
Since then, there has been a variety of applications of this
theory, including pursuit-evasion games [1, 8, 10, 14–16,
19, 21–24] as well as military and aerospace applications
[2, 6, 7, 9, 17, 18]. Basically, the pursuit-evasion problem
models the process where one or more pursuers tries to
chase one or more evaders while the evaders try to escape.
Solving a pursuit-evasion game essentially involves
developing strategies for both the pursuers and evaders
such that their prescribed performance indices are
optimized. Historically, pursuit-evasion games were first
investigated by Isaacs [11] in the 1960s. Saddle point
solutions for a type of zero-sum single-pursuer
single-evader games were considered in [10].
Nonzero-sum pursuit-evasion games were introduced and
investigated as an example of the Nash strategies in [23]
and as an example of the leader-follower Stackelberg
strategies in [21, 22]. Two pursuers and one evader games
were studied in [8]. In recent years, multiplayer pursuit
evasion differential games involving a number of pursuers
and a single evader have received considerable attention in
the literature [1, 16, 18, 24]. These types of games present
numerous interesting challenges when compared to the
original single-pursuer single-evader game. For the
pursuers, the challenge revolves around designing
coordinated strategies to accomplish their common goal of
capturing the evader. For the evader, who is clearly
outnumbered by the pursuers, the challenge is to
maneuver around the pursuers so as to avoid being
captured. Conventional multiplayer pursuit-evasion games
usually assume that every player has unlimited
observations of all the other players at all times and yields
feedback strategies that are dependent on the initial states.
While this unlimited observations assumption may hold in
some cases, a realistic challenge in solving these problems
is when some of the players may not have access to
unlimited observations of other players. This condition
might occur due to factors such as limited sensing
capabilities, obstacles in the environment, or severe
weather conditions. The conventional differential games
approach for solving problems with limited observations
yields feedback strategies that depend on the initial states
of all the players [12, 13], but the requirement of all
pursuers having access to the full information of initial
states may not be met in certain applications.

This paper considers an N-pursuer single-evader game
over a finite time horizon in which only the evader is
assumed to have unlimited sensing capability that allows it
to observe all the pursuers at all times. Each pursuer, on
the other hand, has limited sensing capabilities that allows
it to observe the evader and/or other pursuers only if they
fall within its sensing range. A practical example of such a
situation occurs when a well-equipped unmanned aerial
vehicle (UAV) with a very wide range of sensing
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capability must evade several (possibly a large number of)
weakly equipped pursuing UAVs. Because of the limited
sensing capabilities of the pursuers, these types of
problems need to be treated using an approach different
from the probabilistic or artificial intelligence approaches
that currently exist in the literature [1, 7, 9, 14, 18, 24].
This paper considers a differential game approach in
formulating and solving this problem. This approach
builds upon previous results obtained in [15, 16] and
overcomes the requirement of full observations of the
initial states by all pursuers in implementing their
feedback strategies. In [15], a class of distributed game
strategies for the pursuers and evader were shown to be
inversely optimal with respect to certain performance
indices that are typically different from the original
indices. These results were then extended in [16] using an
optimization approach to derive optimal strategies within
this class. In this paper, we further explore the control
structure of feedback Nash strategies for multipursuer
single-evader differential games with unlimited
observations and extend it to the case where only the
pursuers have limited observation capabilities. In such a
case, the novel concept of best achievable performance
indices that utilize the inverse optimality is proposed to
determine feedback Nash strategies that can be
implemented for the given control structure and are
independent of the initial states. This is a very important
property of our approach in overcoming a long-standing
problem of the dependence on the initial states of the
feedback Nash strategies that are derived using the
conventional approach.

The remainder of the paper is organized as follows.
Problem formulation is presented in Section II. The
feedback Nash strategies with unlimited observations are
presented in Section III. Pursuers’ Nash strategies with
limited observations are analyzed and obtained in Section
IV. An illustrative example and simulation results with
different scenarios are shown in Section V. Concluding
remarks are made in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider a differential game problem
between a single evader with unlimited sensing capability
and N pursuers with limited sensing capabilities. The
displacement vector zi between pursuer i and the evader e
as shown in Fig. 1 is defined as

zi = xe − xi ∀i ∈ {1, · · · , N}, (1)

where xe ∈ R
n is the evader’s position vector and xi ∈ R

n

is pursuer i’s position vector.
We assume that a collective objective of the pursuers is

to minimize the sum of the weighted distances between
the evader and themselves at a terminal time tf > 0 while
at the same time minimizing these distances and their
control efforts over the time interval [0, tf]. Hence, the
group of pursuers tries to minimize the following

Fig. 1. Displacement vectors.

performance index:

Jp =
N∑

j=1

fpj

2

∥∥zj (tf )
∥∥2

+
∫ tf

0

N∑
j=1

(qpj

2

∥∥zj

∥∥2 + rj

2

∥∥uj

∥∥2
)

dt, (2)

where uj is pursuer j’s velocity control input, ‖·‖ is the
Euclidean norm, and scalarsfpj

, qpj
, and rj are positive

weights for j = 1, . . . , N. On the other hand, we assume
that the evader’s objective is to maximize the sum of the
weighted terminal distances between the pursuers and
itself while at the same time maximizing these distances
and minimizing its control effort over the time interval
[0, tf]. Hence, the evader will try to minimize the
performance index:

Je = −
N∑

j=1

fej

2

∥∥zj (tf )
∥∥2

+
∫ tf

0

N∑
j=1

(
−qej

2

∥∥zj

∥∥2
)

+ re

2
‖ue‖2 dt, (3)

where ue is the evader’s velocity control input and
scalarsfej

, qej
, and re are positive weights for j = 1, . . . ,

N. To express the system dynamics more compactly, we
define the vector z = [zT

1 ; · · · zT
N ]T which, along with (1),

yields

ż = Beue + Bpup. (4)

where matrix Be = 1N ⊗ In, 1N ∈ R
N×1 is a vector with

all the entries equal to 1, In ∈ R
n×n is the identity matrix,

⊗ is the Kronecker product, up = [uT
1 · · · uT

N ]T , and Bp

= −IN ⊗ In. The performance indices (2) and (3) can be
rewritten as

Jp = 1

2

∥∥z(tf )
∥∥2

Fp
+ 1

2

∫ tf

0
(‖z‖2

Qp
+ ‖up‖2

Rp
) dt, (5a)

Je = 1

2

∥∥z(tf )
∥∥2

Fe
+ 1

2

∫ tf

0
(‖z‖2

Qe
+ ‖ue‖2

Re
)dt, (5b)
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where ‖z‖2
F = zT Fz and

Fp = diag{fp1, · · · , fpN
} ⊗ In,

Fe = −diag{fe1, · · · , feN
} ⊗ In

Qp = diag{qp1, · · · , qpN
} ⊗ In,

Qe = −diag{qe1, · · · , qeN
} ⊗ In

Rp = diag{r1, · · · , rN } ⊗ In,

Re = re ⊗ In,

and “diag” stands for “diagonal matrix.” Hence, given the
system dynamics in (4) and performance indices in (5), a
differential nonzero-sum game between the group of
pursuers and the evader is formed. A Nash equilibrium
solution (u∗

p, u∗
e ) for this game is defined by the following

inequalities [23]:

Jp(u∗
p, u∗

e ) ≤ Jp(up, u∗
e ), ∀up ∈ Up (6a)

Je(u∗
p, u∗

e ) ≤ Je(u∗
p, ue), ∀ue ∈ Ue, (6b)

where Up and Ue are the admissible strategy sets for the
pursuers and evader, respectively.

The admissible strategy sets Up and Ue are closely
related to the information structures of the pursuers and
evader. We assume that both the group of pursuers and
evader have feedback information structures, which means
that their admissible strategies will be functions of the
displacement vector z at every instant of time t during
the game. Furthermore, since the evader’s observation
range is assumed to be sufficiently wide, its admissible
strategy can be implemented as a full feedback of z1, . . . ,
zN. However, since each pursuer has only a limited
observation range, its admissible strategy can only be
implemented as a partial feedback of z1, . . . , zN. We call
these strategies as “structured” and refer to them as us

pi

for i = 1, . . . , N.
Mathematically, to accurately model the limited

observation capabilities of the pursuers, we assume that
pursuer i has a sensing range defined by a sensing
radius ri > 0. If the Euclidean distance between pursuer
i and the evader is less than or equal to ri, i.e.,
‖zi‖ = ‖xi − xe‖ ≤ ri , then pursuer i is able to observe
the evader, otherwise, pursuer i cannot observe the evader.
Consequently, we define a binary scalar function hi(t) to
represent pursuer i’s ability to observe the evader at time t
as follows:

hi(t) =
{

1 if ‖zi‖ ≤ ri

0 if ‖zi‖ > ri

. (7)

Similarly, if the Euclidean distance between pursuer i and
pursuer j is less than or equal to ri, i.e., ‖zi – zj‖ =
‖xi – xj‖ ≤ ri, then pursuer i is able to observe pursuer j,
otherwise, pursuer i cannot observe pursuer j.
Consequently, we can use the Laplacian matrix [5] (a
widely used tool in cooperative control theory [3, 20]) to

describe the observations among the pursuers at every
instant of time t. The Laplacian matrix is denoted by
L(t) = [Lij (t)] ∈ R

N×N where

Lij (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 if
∥∥zi − zj

∥∥ ≤ ri for j 	= i

0 if
∥∥zi − zj

∥∥ > ri forj 	= i

−
N∑

l=1,l 	=i

Lil if j = i

(8)

for i, j = 1, . . . , N.
It is important to note at this point that although the

evader has sufficiently wide observation range to observe
all of the pursuers at every instant of time, we will assume
that it has no information on the individual pursuers’
observation radii r1, . . . , rN or the capabilities of the
pursuers to obverse each other. Therefore, we assume that
during the game process, the evader has no knowledge of
the existence of limited observations among the pursuers
and the overall information topology. On the other hand,
for the pursuers, we assume that all are aware of their
limited observation capabilities as well as the evader’s
unlimited observation capability.

III. FEEDBACK NASH STRATEGIES WITH UNLIMITED
OBSERVATIONS

For the pursuit-evasion problem described in (4) and
performance indices (5), the standard feedback Nash
strategies for all players can be determined as [23]:

u∗
p = −R−1

p BT
p Ppz (9a)

u∗
e = −R−1

e BT
e Pez, (9b)

where matrices Pp and Pe are solutions to the coupled
differential Riccati equations

Ṗp + Qp − PpBpR−1
p BT

p Pp − PpBeR
−1
e BT

e Pe

− PeBeR
−1
e BT

e Pp = 0 (10a)

Ṗe + Qe − PeBpR−1
p BT

p Pp − PpBpR−1
p BT

p Pe

− PeBeR
−1
e BT

e Pe = 0. (10b)

with boundary condition Pp(tf) = Fp and Pe(tf) = Fe.
To implement the strategies in (9a) and (9b), both the
evader and pursuers require unlimited observations
because solutions Pe and Pp are matrices of full nonzero
entries.

In this paper, the evader is assumed to have full
information about the pursuers, hence, it can employ
strategy (9a). On the other hand, the pursuers are assumed
to have only limited observations and hence cannot
implement the strategies in (9b). To see how strategy (9b)
can be modified to match the limited observations, we
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note that (9b) can be rewritten as:

u∗
pi = −R−1

i (−BT
i )P T

piz

= R−1
i BT

i

N∑
j=1

Pij zj

= R−1
i BT

i

⎡
⎣ N∑

j=1

Pij

⎤
⎦ zi + R−1

i BT
i

N∑
j=1

Pij (zj − zi)

(11)

for all i = 1, . . . , N, where Ppi is the ith nN by n block
column in Pp, i.e., Pp = [Pp1 . . . PpN], and Pij is the jth n by
n block matrix in Ppi. The full-information pursuer
strategy (11) consists of two parts. The first part represents
a feedback of zi (which is the displacement between
pursuer i and the evader), and the second part is the sum of
feedbacks (z1 − zi) up to (zN − zi) (which are the
displacement vectors between pursuer i and the rest of
pursuers). Essentially, expression (11) reveals that pursuer
i will chase the evader not only along its own line of sight
toward the evader but also it takes into account all the lines
of sight from all the pursues toward the evader. The reason
for the pursuers to follow such a strategy is because the
evader considers in its strategy the line-of-sight
information about all the pursuers.

Inspired by expression of (11), a pursuer with limited
observations can only choose a strategy based on the
available information but in the form of (11). If, e.g.,
pursuer i can observe the evader (i.e., ‖zi‖ = ‖xi − xe‖
≤ ri), the first part in (11) can be implemented and hence
should be included. Similarly, if pursuer i can observe
some of the other pursuers, the corresponding terms in the
second part of (11) are implementable and hence should
be included for all j satisfying ‖zi − zj‖ = ‖xi − xj‖ ≤ ri.
Such a modification represents the best possible effort by
the pursuers from the information perspective, and, as
mentioned earlier, the resulting strategy becomes
“structured” (with respect to the available information)
and will be discussed in details in the next section. Clearly,
this structured strategy no longer forms a Nash
equilibrium with evader’s strategy (9b). Therefore, a
different concept or approach is needed to analyze and
design pursuers’ strategy under limited observations so
that they do form a Nash equilibrium with the evader’s
strategy (9b), which is the subject of the following section.

IV. FEEDBACK NASH STRATEGIES
FOR THE PURSUERS

Motivated by the discussions in the previous section,
the following structured feedback strategies are proposed
for the pursuers:

us
pi

�= hi(t)Kie(t)zi + Kip(t)
N∑

j=1

Lij (t)[zj − zi],

which, using the zero-row-sum property of the Laplacian
matrix L, can be reduced to

us
pi = hi(t)Kie(t)zi︸ ︷︷ ︸

a

+ Kip(t)
N∑

j=1

Lij (t)zj

︸ ︷︷ ︸
b

∀i = 1, · · · , N (12)

where the superscript s in us
pi means that the strategy is

structured, scalar hi(t) is defined in (7), scalar Lij(t) is
defined in (8), and matrices Kie ∈ R

n×n and Kip ∈ R
n×n

are feedback gains to be determined. Term a in (12)
represents the component for pursuer i to chase the evader
directly if it observes the evader (i.e., when hi(t) = 1).
Term b in (12) is also known as a cooperative protocol,
and it ensures that the pursuer also uses all the available
information about the rest of pursuers that it can observe
in addition to the evader. When pursuer i is unable to
observe the evader (i.e., when hi(t) = 0), it has no choice
but to merely collaborate with the nearby pursuers.
Strategy (12) can be expressed in a more compact
form as

us
pi = Kie[0 · · · 0 (hiIn) 0 · · · 0]z

+Kip[(Li1In) · · · (LiNIn)]z

�= MiCiz, (13)

where Mi = [Kie Kip] ∈ R
n×2n and

Ci =
[

0 · · · 0 (hiIn) 0 · · · 0

(Li1In) · · · · · · (LiNIn)

]
,

where hi and Lij are defined in (7) and (8), respectively.
Therefore, the pursuers’ control vector us

p =
[(us

p1)T · · · (us
pN )T ]T can be written as us

p = Mpz,

where

Mp = [(M1C1)T · · · (MNCN )T ]T . (14)

The problem now reduces to finding a set of matrices
M∗

1 , · · · , M∗
N that are independent of the initial states such

that feedback gain M∗
p = [(M∗

1 C1)T · · · (M∗
NCN )T ]T and

the resulting pursuers’ strategy

us∗
p = M∗

pz (15)

can still form a Nash equilibrium with the evader’s
strategy u∗

e in (9b). Clearly, since the structure of us
p is in

the output feedback type with N output feedback channels
C1z, . . . , CNz, one possible approach to finding matrices
M∗

1 , · · · , M∗
N that ensure that (9b) and (15) form a Nash

equilibrium is to adopt the widely used optimal output
feedback or structured control design approach in [12, 13],
which is also applicable to differential games. The basic
idea of this approach when applied to the optimal control
case is to parameterize the control inputs with given
structure and optimize the feedback gain directly with
respect to the given performance index. However, for a
game problem, because every player’s control input has
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influence on other players’ performance indices values, all
the players’ structured controls and the corresponding
feedback gains need to be simultaneously parameterized
and optimized with respect to the given set of performance
indices to obtain the Nash equilibrium. This cannot be
implemented in our game setup because, as mentioned
earlier, the evader will be implementing the Nash strategy
(9b) and hence it is not possible to simultaneously
parameterize and optimize it along with the strategy
of the pursuers to form a Nash equilibrium. In what
follows, we propose a novel Nash strategy design
approach based on a concept of “best achievable
performance indices.”

Because the evader’s Nash strategy in (9b) is fixed, our
approach is to find a class of performance indices
parameterized by the feedback gain Mp with respect to
which the evader’s strategy in (9b) and pursuers’ strategy
in (15) form a Nash equilibrium. Within this class, we then
find one set of performance indices called the best
achievable performance indices such that they are as close
as possible to the original indices given in (5b). The
pursuers’ Nash strategy is then chosen to be the one with a
matrix Mp = M∗

p corresponding to the best achievable
performance indices. To achieve this goal, we first need to
find the class of performance indices corresponding to the
strategies (9b) and (15). Therefore, we propose the
following theorem.

THEOREM 1 For the pursuit-evasion game described by
system dynamics (4) and performance indices (5), for an
arbitrary set of matrices M1, . . . , MN, the strategies u∗

e in
(9b) and us

p = Mpz form a Nash equilibrium:

J s
p(us

p, u∗
e ) ≤ J s

p(up, u∗
e ), ∀up ∈ Up (16a)

J s
e (us

p, u∗
e ) ≤ J s

e (us
p, ue), ∀ue ∈ Ue, (16b)

with respect to performance indices

J s
p = 1

2

∥∥z(tf )
∥∥2

Fp
+ 1

2

∫ tf

0
(‖z‖2

Qs
p
− uT

pSz − zT ST up

+‖up‖2
Rp

)dt, (17a)

J s
e = 1

2

∥∥z(tf )
∥∥2

Fe
+ 1

2

∫ tf

0
(‖z‖2

Qs
e
+ ‖ue‖2

Re
)dt, (17b)

where

Qs
p = MT

p RpMp − PpBpR−1
p BT

p Pp + Qp (18a)

S = BT
p Pp + RpMp, (18b)

Qs
e = −PeBpR−1

p (RpMp + BT
p Pp)

−(RpMp + BT
p Pp)T R−1

p BT
p Pe + Qe (18c)

matrices Pp and Pe are the solutions to (10) and matrix Mp

is as given in (14).

PROOF Consider Lyapunov functions

Vp = 1

2
zT Ppz and Ve = 1

2
zT Pez. (19)

Differentiating Vp in (19) with respect to t and integrating
it from 0 to tf yield

Vp(tf ) − Vp(0)

= 1

2

∫ tf

0
[− ‖z‖2

Qs
p
− ‖u‖2

Rp
+ uT

pSz

+ zT ST up + 2zT PpBe(ue + R−1
e BT

e Pez)

+ ∥∥up − Mpz
∥∥2

Rp
]dt.

Hence,

J s
p = Vp(0) +

∫ tf

0

1

2

∥∥up − Mpz
∥∥2

Rp

+ zT PsBe(ue + R−1
e BT

e Pez)dt, (20)

where J s
p is defined in (17a). Similarly, we can show that

J s
e = Ve(0) +

∫ tf

0

1

2

∥∥ue + R−1
e BT

e Pez
∥∥2

Re

− zT PeBp(up − Mpz)dt, (21)

where J s
e is defined in (17b). Because Rp and Re are

positive definite, it is obvious from (20) and (21) that
given performance indices defined in (17), the inequalities
in (6) holds for up = Mpz and u∗

e = −R−1
e BT

e Pe. Hence,
strategies (9b) and (15) form a Nash equilibrium with
respect to performance indices in (17). Clearly, if Mp can
be written asMp = −R−1

p BT
p Pp, then J s

p in (17a) becomes
identical to (5b) and J s

e in (17b) becomes identical to (5b).
The evader’s strategy (9b) and pursuers’ strategy (15)

form a Nash equilibrium with respect to (17) for any
matrix Mp. The next step is to find a matrix M∗

p such that
the corresponding pair of performance indices in (17) with
Mp = M∗

p being closest to the original performance
indices Jp and Je in (5). Toward that end, we propose the
following concept of best achievable performance indices.

DEFINITION 1 Given the class of performance indices in
(17), if the matrix norms of (Qs

p − Qp), S, and (Qs
e − Qe)

are simultaneously minimized by a feedback matrix M∗
p(t)

for all t, then the set of performance indices J s∗
p and J s∗

e

corresponding to this M∗
p(t) are called the best achievable

performance indices.

To find the optimal matrix M∗
p(t) corresponding to the

best achievable performance indices, we need to solve a
multiobjective optimization problem of minimizing∥∥Qs

p − Qp

∥∥ , ‖S‖, and
∥∥Qs

e − Qe

∥∥ simultaneously. One
way to accomplish this is to minimize a convex
combination of these three terms over [0, tf]. Let

φ(Mp(t)) =
∫ tf

0
H (t)dt, (22)
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where

H (t) = α1

∥∥Qs
p − Qp

∥∥2

f
+ α2 ‖S‖2

f + α3

∥∥Qs
e − Qe

∥∥2
f

= α1Tr[(Qs
p − Qp)2] + α2Tr(ST S)

+ α3Tr[(Qs
e − Qe)2] (23)

where ‖·‖f is the Frobenius norm with the property
‖S‖2

f = Tr(ST S), 0 < αj < 1 for j = 1, 2, 3, and∑3
j=1 αj = 1. The minimization problem reduces to

finding a matrix M∗
p(t) such that

φ(M∗
p(t)) ≤ φ(Mp(t)) ∀Mp(t). (24)

Because Mp is as defined in (14), the minimization in (24)
is actually done with respect to M1(t), . . . , MN(t). This
minimization problem is generally quite difficult to solve
analytically. A possible numerical approach is to use
gradient-based iterative algorithms [4] to find matrices
M∗

1 (t), · · · , M∗
N (t). These algorithms will require an

expression for the gradient of H(t) with respect to Mi(t) for
i = 1, . . . , N. This expression can be determined from (23)
as follows:

∇Mi
H = (dT

i ⊗ In)[4α1RpMp(Qs
p − Qp)

+ 2α2RpS − 4α3B
T
p Pe(Qs

e − Qe)]CT
i (25)

for all i = 1, . . . , N, where Mp is defined in (14) and
di ∈ R

N is a vector with the ith entry equal to 1 and the
other entries equal to 0. Note that using this approach, the
derived optimal matrices M∗

1 (t), · · · , M∗
N (t) that define the

Nash feedback strategies of the pursuers (15) will be
independent of the initial states. As mentioned earlier in
the introduction section, this is an important property of
our approach because any dependence of these matrices
on the initial states would render their use as feedback
gains impractical. Also note that by varying the
coefficients α1, α2, and α3 in (23), a noninferior set of the
solutions can be generated. An appropriate choice of these
coefficients can be made to place a desired emphasis on
the importance of minimizing each of the three terms in
(23) as compared to the other two.

It is important to note at this stage that the algorithm
can be implemented in a distributed manner. This is clear
since it follows from (13) that gradient (25) does not
require any state information but only the knowledge of
L(t), which, according to (8), has a finite number of values.
Optimization algorithm (25) can be performed offline with
respect to possible values of the Laplacian matrix L(t).
The proposed method can then be implemented in a
setting of distributed communication and coordination
with low-rate changes of L(t) being relayed to all the
pursuers. This can be accomplished because, as the game
begins and proceeds, distributed information of relative
distance [zi(t) − zj(t)] becomes available, the row entries
of L(t) reflect evader/other-pursuers moving into/out of the
sensor range of individual pursuers, and these
mechanical-motion-driven changes in L(t) are much
slower than the sampling rate of locally measuring the
relative distances.

Fig. 2. Initial positions of three pursuers and single evader.

V. ILLUSTRATIVE EXAMPLE

In order to illustrate the Nash strategy obtained using
the best achievable performance indices approach, let us
consider a three-pursuer single-evader differential game
taking place in a planar environment and defined over a
time interval [0, 3]. Suppose that xi = [xT

i1 xT
i2]T ∈ R

2

represents player i’s position and upi = [uT
pi1 uT

pi2]T ∈ R
2

represents player i’s velocity control. Hence, in equation
(4), we have

Be =

⎡
⎢⎣

I2

I2

I2

⎤
⎥⎦ and Bp = −

⎡
⎢⎣

I2 0 0

0 I2 0

0 0 I2

⎤
⎥⎦ .

The performance indices are given by (5) with tf = 3,
Fp = Qp = qI6, Rp = I6, Fe = Qe = I6, and Re = I2, where
q is a positive scalar that can be varied to analyze different
scenarios. As shown in Fig. 2, we assume that the
pursuers’ initial positions are x1(0) = [–3 0]T, x2(0) =
[3 0]T, x3(0) = [5 1]T, the evader’s initial position is xe(0)
= [0 1]T, and the pursuers’ sensing radii are the same and
equal to 4. Clearly, at t = 0, pursuer 1 can only observe the
evader, pursuer 2 can observe the evader and pursers 3,
and pursuer 3 can only observe pursuer 2. Further, we
assume that the evader is captured if the minimum
distance between the pursuers and evader is less than a
capture radius σ = 0.1, which is shown as a light black
circle centered at the evader in Fig. 2. In this example, we
will consider two different scenarios:

1. Scenario 1: q = 1. Pursuers put equal emphasis on
minimizing their distances to the evader and on
minimizing their control effort.

2. Scenario 2: q = 5. Pursuers put more emphasis on
minimizing their distances to the evader than on
minimizing their control effort.

A. Evader’s Strategy

The evader solves the coupled differential Riccati
equations (10) and implements the corresponding Nash
strategy. This yields solutions Pp and Pe in the following
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Fig. 3. Motion trajectories of pursuers and evader for Scenario 1 (see
animation in Supplemental Video S1).

form:

Pp =

⎡
⎢⎣

Pp1 Pp2 Pp2

Pp2 Pp1 Pp2

Pp2 Pp2 Pp1

⎤
⎥⎦ ⊗ I2,

Pe =

⎡
⎢⎣

Pe1 Pe2 Pe2

Pe2 Pe1 Pe2

Pe2 Pe2 Pe1

⎤
⎥⎦ ⊗ I2.

Hence, the evader’s feedback Nash strategies (9b) in terms
of z1, z2, and z3 can be expressed as

u∗
e = (Pe1 + 2Pe2)(z1 + z2 + z3).

B. Pursuers’ Strategies

To derive the pursuers’ strategy, we assume that for
implementation purpose, the pursuers perform sensing
only at discrete instants of time t0, t1, . . . , t299, where t0 =
0, t300 = tf = 3. Since tj − tj–1 = 0.01 is quite small for all j
= 1, . . . , 300, we assume that the observations among the
players can be regarded to be constant within such a small
time interval (tj − tj–1). We also assume that the pursuers
will carry out the proposed best achievable performance
indices approach with the following (arbitrary) choice of
coefficients in (23): α1 = 1/4, α2 = 1/2, and α3 = 1/4.

1) Scenario 1: In this scenario, the motion trajectories
of the pursuers and evader over time are shown in Fig. 3.
The distances between the pursuers and evader over time
are shown in Fig. 4 where the capture radius σ = 0.1 is
shown in terms of a dashed black horizontal line. Clearly,
in this scenario, none of the pursuer is able to capture the
evader when the final time tf = 3 is reached. Furthermore,
the change in the observations among the players is
reflected in the changes of hi(t) in (7) and Laplacian
matrix with Lij(t) defined in (8). In this scenario, the values
of h1(t), h2(t), h3(t) and the value of the Laplacian matrix

Fig. 4. Distances between pursuers and evader for Scenario 1.

L(t) have changed as follows:

h1(t) =
{

1 0 ≤ t ≤ 2.91
0 2.91 < t ≤ 3

h2(t) =
{

1 0 ≤ t ≤ 2.91
0 2.91 < t ≤ 3

h3(t) = 0 0 < t ≤ 3

and

L(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ 0 0 0

0 1 −1
0 −1 1

⎤
⎦ 0 ≤ t ≤ 0.16

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎦ 0.16 < t ≤ 0.52

⎡
⎣ 1 −1 0

−1 1 0
0 0 0

⎤
⎦ 0.52 < t ≤ 3

.

The change in hi(t) means that pursuers 1 and 2 lose
observation of the evader after t = 2.91 while pursuer 3
was never able to observe the evader for the entire game.
The change in the Laplacian matrix essentially means that
only pursuers 2 and 3 can observe each other for t ∈
[0, 0.16], pursuer 2 can observe pursuers 1 and 3 for t ∈
(0.16, 0.52] while pursuers 1 and 3 cannot observe each
other at this time interval, and only pursuers 1 and 2 can
observe each other for t ∈ (0.52, 3].

2) Scenario 2: In this scenario, the motion trajectories
of the pursuers and evader are shown in Fig. 5. The
distances between the pursuers and evader are shown in
Fig. 6 where the capture radius σ = 0.1 is shown in terms
of a dashed black horizontal line. Clearly, in this scenario,
pursuer 2 is the first one to capture the evader at t = 1.2.
During the entire game, the values of h1(t), h2(t), h3(t) and
the value of the Laplacian matrix L(t) have changed as
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Fig. 5. Motion trajectories of pursuers and evader for Scenario 2 (See
animation in Supplemental Video S2).

Fig. 6. Distances between pursuers and evader for Scenario 2.

follows:

h1(t) = 10 < t ≤ 3

h2(t) = 10 < t ≤ 3

h3(t) =
{

0 0 ≤ t ≤ 0.29

1 0.29 < t ≤ 3

and

L(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

0 0 0

0 1 −1

0 −1 1

⎤
⎥⎦ 0 ≤ t ≤ 0.11

⎡
⎢⎣

1 −1 0

−1 2 −1

0 −1 1

⎤
⎥⎦ 0.11 < t ≤ 0.41

⎡
⎢⎣

2 −1 −1

−1 2 −1

−1 −1 2

⎤
⎥⎦ 0.41 < t ≤ 3

Fig. 7. Trajectories of pursuers and evader when q = qc = 1.38 (See
animation in Supplemental Video S3).

Fig. 8. Distances between pursuers and evader when q = qc = 1.38.

The change of hi(t) means that after t = 0.29, all the
pursuers are able to observe the evader. The change of the
Laplacian matrix means that only pursuers 2 and 3 can
observe each other for t ∈ [0, 0.11], pursuer 2 can observe
pursuers 1 and 3 for t ∈ (0.11, 0.41] while pursuers 1 and 3
cannot observe each other at this time interval, and all the
pursuers are able to observe each other for t ∈ (0.41, 3].

C. Remark

It would be interesting to determine a critical value qc

of q that separates the escape and capture regions of the
evader. That is, if q < qc, the evader escapes and if q ≥ qc,
the evader is captured at a time instant t ∈ [0, 3]. For this
game, the critical value of q has been determined to be qc

= 1.38. Fig. 7 shows the motion trajectories of the
pursuers and evader when q = qc = 1.38. Fig. 8 shows the
distances between the pursuers and evader when q = qc =
1.38, where the capture time occurs at t = 1.55.

VI. CONCLUSION

In this paper, the problem of deriving feedback Nash
strategies that are independent of the initial states for an
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N-pursuer single-evader differential game with quadratic
performance indices over a finite time horizon is
considered. The evader is assumed to have unlimited
observations while each pursuer has limited observations
based on its own sensing radius. Because the evader is
able to observe all the pursuers at all times, it implements
the standard feedback Nash strategy derived from the
well-known coupled differential Riccati equations
approach. However, for the pursuers whose observations
are limited, we propose a novel approach for them to
implement a collective strategy based on the concept of
best achievable performance indices. This approach yields
initial-states-independent strategies for the pursuers that
satisfy a Nash equilibrium with the evader’s strategy with
respect to the best achievable performance indices. An
illustrative example involving three pursuers and one
evader is solved and simulation results corresponding to
different scenarios are presented.
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